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Abstract: In this paper, we generalize 2- and 3-dimensional quadratic curves and surfaces to 
multidimensional quadratic hypersurfaces using graphical methods. Along the way, the 
multidimensional versions of the conic sections are considered. They have simple graphic features, 
and their regulated projections into 3-space often show up in nature and are sometimes used in art. 
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2- and 3-dimensional quadratic curves and surfaces 

A 2-dimensional quadratic curve in this paper is a curved 1-space given by a quadratic equation 
having 2 variables, while a 3-dimensional quadratic surface is a curved 2-space given by a quadratic 
equation having 3 variables.  

Based on their graphical characteristics, they can be grouped into the next 4 classes:  
The 1st class includes typical proper ones such 

as the circle (x2+y2=1, a special ellipse) and 
hyperbola (x2-y2=1) in 2-space, and the sphere 
(x2+y2+z2=1, a special ellipsoid), hyperboloid of 
one sheet (x2+y2-z2=1), and hyperboloid of two 
sheets (x2-y2-z2=1) in 3-space. 

The 2nd class includes degenerated proper ones 
such as the parabola (x2-y=0) in 2-space, and the 
elliptic paraboloid (x2+y2-z=0) and hyperbolic 
paraboloid (x2-y2-z=0) in 3-space. 

The 3rd class includes radial ones such as 
mutually intersecting two lines (x2-y2=0) in 2-space, 
and the cone (x2+y2-z2=0) in 3-space.   

Finally, the 4th class includes parallel ones such 
as the parabolic cylinder (x2-y-z=0) in 3-space. 

   
4-dimensional quadratic hypersurfaces 

A 4-dimensional quadratic hypersurface in this 
paper is a curved 3-space given by a quadratic 
equation having 4 variables. Following the 
examples of 2- and 3-space, they are also grouped 
in 4 different classes as shown in Figure 1,. 
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Figure 1: 4-dimensional quadratic hypersurfaces. 
 



In the figure, each hypersurface is depicted 
using sections by 3-spaces parallel to XYZ-, 
XYU-, XZU-, and YZU-space. For instance, in 
the case of the hypersphere (x2+y2+z2+u2=1), one 
of the sections is a sphere (x2+y2+z2=1-u2) 
parallel to XYZ-space. 

On the contrary, the hyperspheres shown in 
Figure 2 were constructed using sections by 
2-spaces. One of the sections is the circle 
(x2+y2=1-z2-u2) parallel to the XY-plane. Such 
circles are used to construct a torus (Banchoff, 
1990, pp.124-129). Figure 3 shows the 1st class 
hypersurfaces depicted in this manner.      

 
N-dimensional quadratic hypersurfaces 

In general, an n-dimensional quadratic 
hypersurface is a curved (n-1)-space given by a 
quadratic equation having n variables.  

Their precise shapes can be simply 
represented by using orthographic projections. 

An orthographic projection in 3-dimensional 
XYZ-space consists of a pair of the plan, an 
orthogonal projection onto the XY-plane, and the 
elevation, an orthogonal projection onto the 
XZ-plane. They are freely arranged vertically, 
while the X-axis is set horizontally. An additional  
projection onto the YZ-plane is a side view.  

Similarly, the orthographic projection in 4- 
dimensional XYZU-space consists of a triplet of 
the plan, a projection onto the XY-plane, the 
elevation, a projection onto XZ-plane, and the 
hyperelevation (or 4-dimensional elevation), a 
projection onto the XU-plane. These are also 
arranged vertically, with a horizontal X-axis. 

In general, the orthographic projection in 
n-space consists of a set of n-1 orthogonal 
projections onto 2-space which is freely arranged 
vertically, while the X-axis is set horizontally. 
Figure 4 shows the cases of the 5-dimensional 1st 
class ones. The 3- and 4-dimensional cases are 
also contained in the figure. 
 
Variation of sections 

The orthographic projection in n-space is 
usually constructed using sections by 2- to 

Figure 3: The 4-dimensional 1st class quadratic 
hypersurfaces represented using sections by 
2-space. 
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 Figure 4: Orthographic projections of the 
5-dimensional 1st class quadratic hypersurfaces. 
The outlines of every plan and elevations are 
represented by congruent circles, x2+y2=1 etc., or 
hyperbolas, x2-y2=1 etc. The dotted line 
quadrangles around hyperbolas are used to 
delineate the drawing areas. This table is composed 
of 20(=4×5) projections. Of these, the 6(=2×3) and 
12(=3×4) projections at top left show the 3- and 
4-dimensional cases respectively. 

Figure 2: A parallel (left) and radial (right) 
projection of the half part of a 4-dimensional 
hypersphere represented using sections by 
2-space.   



(n-1)-space. There are n-2 types of the sections in n-space.  
In 3-space, there is only one kind of section. In the case 

of a sphere, the circles (x2+y2=1-z2) parallel to the 
XY-plane are one such example. Their plans are circles, 
while elevations are line segments parallel to the X-axis 
because the value of Z is constant. The outlines of the 
completed plan and elevation show congruent circles.  

There are two kinds of sections for a 4-dimensional 
hypersphere. One such example is the 3-dimensional sphere 
(x2+y2+z2=1-u2) parallel to the XYZ-space whose plan and 
elevation are congruent circles, while the hyperelevation is 
a line segment parallel to the X-axis. The other example is a 
2-dimensional circle (x2+y2=1-z2-u2) parallel to the 
XY-plane which is also a section of a torus. This torus is 
shown by the circular plan, quadrangular elevation, and 
linear hyperelevation. In any case, the outlines of the 
completed plan and two elevations show congruent circles.  

There are three kinds of sections for a 5-dimensional 
hypersphere (Fg.5). These are 4-dimensional hyperspheres 
(x2+y2+z2+u2=1-v2) parallel to the XYZU-space,  
3-dimensional spheres (x2+y2+z2=1-u2-v2) parallel to the 
XYZ-space, and 2-dimensional circles (x2+y2=1-u2-v2-z2) 
parallel to the XY-plane. Their plans, and 3- and 
4-dimensional elevations, show concentric circles or 
overlapping quadrangles, while the 5-dimensional 
elevations are line segments. In any case, the outlines of the 
completed plan and three elevations show congruent circles 
as is shown at the left end column of Figure 4.  

Figure 6 shows some exotic patterns resulting from the 
projections of a rotating 5-dimensional hypersphere. 

       
N-dimensional conic sections 

There are [n/2] kinds of hypercones in n-space, 
belonging to the 3rd class hypersurfaces. These can derive 
(n-1)-dimensional quadratic hypersurfaces as n-dimensional 
conic sections, when sliced by (n-1)-spaces. 

The 3-dimensional cone (x2+y2-z2=0) derives 
2-dimensional quadratic curves as the 3-dimensional conic 
sections, when sliced by 2-spaces (planes). For example, x2+y2=1 is derived when z=1, x2-z2=-1 
(that is, x2-y2=1) when y=1, x2+2y+1=0 (or x2-y=0) when y-z=1, and x2-z2=0 (or x2-y2=0) is derived 
when y=0. All of them belong to any of the first three classes. There is no 4th class one. 

The two types of 4-dimensional hypercones, x2+y2+z2-u2=0 and x2+y2-z2-u2=0, derive 
3-dimensional quadratic surfaces as 4-dimensional conic sections, when sliced by 3-spaces. For 
example, the 1st class surfaces x2+y2+z2=1 and x2+y2-u2=-1 (that is, x2-y2-z2=1) are derived when 
u=1 and z=1 respectively from the first type hypercone. The second hypercone yields x2+y2-z2=1 
when u=1. The 2nd and 3rd class surfaces are easily derived in an analogous fashion. Nonetheless, 

Figure 6: Exotic patterns resulting 
from the rotation of a 5-dimensional 
sphere. 
 

Figure 5: Three methods for 
constructing the orthographic 
projection of a 5-dimensional 
hypersphere. From left to right, 4-, 
3-, and 2-dimensional sections are 
used. Dotted circles show the 
outlines of the completed 
elevations. The two projections at 
the top of the leftmost column show 
the 3-dimensional case, while the 
4-dimensional case is shown by the 
topmost three drawings in the two 
columns to the left.  
 



none of the 4th class is obtainable in this way. 
In the same manner, from either of the two 

types of 5-dimensional hypercones, all of the 
4-dimensional first three class hypersurfaces  
can be easily derived as 5-dimensional conic 
sections. Nonetheless, none of the 4th class is 
obtained in this fashion.  

In general, all of the (n-1)-dimensional 1st, 
2nd, and 3rd class quadratic hypersurfaces can 
be derived as n-dimensional conic sections. 
Nonetheless, none of the 4th class is obtained.    

 
Conclusions 

This paper focused on the graphic 
representation and construction of 
n-dimensional quadratic hypersurfaces through 
the medium of various sections and, mainly, 
orthographic projections. 

The resulting projections into 3-space have 
simple features, and because of this, some of 
their regulated shapes can be seen in nature 
and art (Figure 8, Miyazaki et al., 2005, 
pp.232-243).  

Here, an intriguing question remains. The 
quadratic shapes in this paper were grouped 
into 4 classes. All of the 1st, 2nd, and 3rd class 
hypersurfaces can be derived as 
(n+1)-dimensional conic sections. Nonetheless, 
the 4th class ones cannot be derived in this 
manner. What this means is that it is only the 
3-dimensional conic sections that cover all of 
the possible quadratic shapes, because there 
are no 4th class surfaces in 3-space.  

Ancient Greek mathematicians were 
familiar with the 3-dimensional conic sections. 
It is therefore possible that they were also 
aware of the “faults” in 4- or 
higher-dimensional conic sections shown in 
this paper.  
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Figure 8: 4-dimensional quadratic hypersurfaces seen 
in art and nature. Left: electric lamps showing a 
hypersphere (top) and two hypercylinders (bottom). 
Right: Halley’s Comet showing a hyperelliptic 
paraboloid (top), the Earth’s crust and the Van Allen 
belts showing hyperspheres represented by a spherical 
(lower left) and torus-shaped (lower right) projection. 
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Figure 7: Construction of the 3-dimensional 1st and 
2nd class quadratic surfaces as 4-dimensional conic 
sections. Lower three rows show the orthographic 
projections, and top row their sketches. 


